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The phenomena of self-diffusion and migration of rough spheres in nonlinear shear
flows are investigated using a new traction-corrected boundary element method (TC-
BEM) in which the near-field asymptotics for the traction solution in the interstitial
region between two nearly touching spheres is seamlessly coupled with a traditional
direct boundary element method. The TC-BEM is extremely accurate in predicting
particle trajectories, and hence can be used to calculate both the particle self-diffusivity
and a newly defined migration diffusivity for dilute suspensions. The migration
diffusivity is a function of a nonlinearity parameter characterizing the shear flow and
arises from the net displacement of the centre of gravity of particle pairs. This net
displacement of the centre of gravity of particle pairs does not occur for smooth
particles, nor for rough particles in a linear shear flow. An explanation is provided
for why two-particle interactions of rough spheres in a nonlinear shear flow result in
particle migration.

1. Introduction
Shear-induced self-diffusion and particle migration in suspension flows are

important in a variety of scientific and engineering applications such as the transport
of sediments, chromatography, composite materials processing, secondary oil recovery
techniques, and sequestration processes in porous media, to name a few. Significant
research effort has been undertaken in the past several decades to understand how
these phenomena influence the modelling of suspension flows under conditions such
that hydrodynamic forces are dominant.

Shear-induced particle diffusion was studied experimentally by Eckstein, Bailey &
Shapiro (1977), who monitored the motion of a tagged particle within a suspension
being sheared in a Couette device. For moderate concentration of particles, they found
the self-diffusivity, D, of the random walk across the streamlines was proportional
to γ̇ a2, where γ̇ is the local shear rate and a is the radius of the particle, with
proportionality coefficient of order 0.025. At low-volume fractions (φ < 0.2), they
found that the diffusivity was approximately linear in the concentration of the
suspension. Leighton & Acrivos (1987a , b) examined the phenomenon in more detail
by reporting experimental values for the lateral diffusion coefficient within the plane
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of shear given by D ≈ 0.5φ2γ̇ a2 for 0.05 <φ < 0.4. The numerical simulations by
Bossis & Brady (1987) and Chang & Powell (1994) for a suspension confined to a
monolayer agreed qualitatively with the results of Leighton & Acrivos (1987a , b) for
the self-diffusivity coefficient. da Cunha & Hinch (1996) studied the self-diffusivity
of rough spheres at low concentrations in a linear shear flow analytically by using
the exact two-sphere solutions of Batchelor & Green (1972), the mobility functions
provided by Kim & Karrila (1991), and by controlling the motion parallel and
normal to the line of centres of the spheres. For roughnesses 0 <ε/a < 0.08, da
Cunha & Hinch determined the self-diffusivity in the plane of shear to be in the range
0 <D/(φa2γ̇ ) < 0.03. They determined further that the out-of-plane self-diffusivity
should be an order of magnitude less than the in-plane self-diffusivity. Brady &
Morris (1997) determined that the asymmetry of the pair-distribution function and
boundary layer structure yielded a shear-induced self-diffusivity of O(γ̇ a2φ) as the
Péclet number Pe → ∞. Their results were qualitatively similar to those of da Cunha &
Hinch.

Shear-induced particle migration has been studied experimentally by several groups
(Leighton & Acrivos 1987 b; Phillips et al. 1992; Tetlow et al. 1998; Hsiao et al.
2003). There is now substantial evidence that particle migration occurs in sheared
suspensions due to gradients in the shear rate, gradients in the particle concentration,
and gradients in the effective suspension viscosity. Leighton & Acrivos (1987 b)
attribute one of the causes of particle migration to the fact that, in the presence of
concentration and shear rate gradients, a test sphere will experience more interactions
on one of its sides than on the other, resulting in drift of the particle from regions
of higher particle interactions to regions of lower particle interactions. Phillips et al.
(1992) used the scaling arguments of Leighton and Acrivos to develop the diffusive
flux model for suspension flows that accounted for shear-induced particle migration.
This model was refined by Fang et al. (2002) to account for the different rates of
migration in the shear plane as opposed to the vorticity plane. In another rheological
model originally proposed by Nott & Brady (1994), designated as the suspension
balance model, the stress in the particle phase is described by a constitutive equation,
and particle transport is driven by gradients in this stress. The suspension balance
model was refined by Morris & Boulay (1999) and Fang et al. (2002) to account for
non-isotropic migration rates. Additional rheological models based on mixture theory
have been proposed by Pozarnik & Skerget (2003) and Buyevich (1995). However,
all of the models proposed to date predict that particle migration should scale with
the radius of the particle squared. Unfortunately, the experimental data (Abbott
et al. 1991; Tetlow et al. 1998; Hsiao et al. 2003) does not support this scaling, and
hence, none of the models can be used to reliably predict transient concentration
profiles.

Mesoscopic simulations can provide valuable information about particle
interactions of suspended particles in nonlinear shear flow, which can potentially
provide insight into some of the problems of the current rheological models
discussed above. However, for suspension flows, particles tend to chain and
agglomerate (Graham & Bird 1984; Mammoli & Ingber 2000), resulting in complex
multiply connected computational domains and extremely stiff differential systems.
In fact, as solid surfaces approach in Stokes flow, the analytical solutions become
nearly singular (Brenner 1961; Cooley & O’Neill 1969; Jeffrey & Onishi 1984). A
manifestation of this for suspension flows is that, as the gap between adjacent particles
becomes small, the interstitial tractions, as calculated by most mesoscopic numerical
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simulation methods, are typically underpredicted, resulting in the relative velocities
between particles being overpredicted (Hampton, Mammoli & Ingber 2003; Mammoli
2005; Sangani & Mo 1994; Dance & Maxey 2003).

The numerical problems associated with solid surfaces in close proximity in Stokes
flow has been recognized for some time. Ascoli, Dandy & Leal (1989) considered
the problem of a sphere interacting with a planar wall using a modified boundary
element method (BEM) based on a wall Green’s function. They were able to determine
accurate results up to dimensionless gaps between the sphere and the wall of 0.05.
For smaller gaps, the results diverged from the analytic results. Chan, Beris &
Advani (1992) developed a second-order BEM to analyse flow about particles in
close proximity. They determined that their BEM solutions diverged from analytical
solutions for separations below approximately 1% of a particle radius. However,
with adaptive subdomain integration, they were able to improve their results. Ingber,
Subia & Mondy (2000) used the so-called Telles transformation (Telles & Oliveira
1994) to reduce quadrature errors associated with the nearly singular integrals, caused
by surfaces being in close proximity, to improve the solution accuracy of following
particle trajectories in viscous flows.

As discussed above, particles suspended in shear flows tend to agglomerate and
chain resulting in extremely small inter-particle separations. In these situations,
the over-prediction of the relative particle velocities can result in non-physical
particle overlap. Further, the numerical problems are so severe that even adaptive
mesh refinement does not provide an adequate convergence rate to overcome these
problems (Mammoli 2005). Thus, a number of researchers have developed methods of
incorporating lubrication approximations based on two-body interactions into their
numerical formulations.

Stokesian Dynamics (SD) is based on decomposing hydrodynamic interactions
between particles into far-field mobility interactions and near-field pairwise additive
‘lubrication’ interactions (Nott & Brady 1994). SD simulations have been used in a
variety of applications including the effective viscosity of monomodal suspensions
(Brady & Bossis 1985) and bimodal suspensions (Chang & Powell 1994), the pair-
distribution function of sheared suspensions (Sierou & Brady 2002), sedimentation
characteristics (Sierou & Brady 2001), and shear-induced particle diffusivities
(Marchioro & Acrivos 2001).

Dance & Maxey (2003) incorporated near-field lubrication effects into their force-
coupling method (FCM) in order to more accurately follow the trajectories of particles
in close proximity. Although the lubrication correction improved their results, they
still found it necessary to employ an additional repulsive force to prevent occasional
particle overlap.

Sangani & Mo (1994) incorporated close-field lubrication forces between pairs of
particles in multiparticle Stokes flow. They used the method of multipole expansion
based on a periodic Green’s function in which the source density was split into a
contribution in the multipole expansion and a component due to the lubrication
forces between particle pairs. They used their method to determine the drag on an
array of cylinders. Sangani & Mo (1996) improved their method by reducing the
operation count and extended their analysis to consider the effective viscosity and
sedimentation characteristics of suspended spheres.

Nasseri et al. (2000) incorporated short-range lubrication effects into the completed
double-layer boundary element method (CDL-BEM) to determine the effective
viscosity of suspensions from the dilute to concentrated regimes. They proposed
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that, whenever the gap between particles was less than a critical value, the particles
would be excluded from the CDL-BEM formulation and their effects would be
modelled using the lubrication equations. Their results for the effective suspension
viscosity improved dramatically by including the lubrication effects.

Although the methods discussed above, incorporating the near-field lubrication
effects into numerical simulations, generally gave good approximation of the
gross features of suspension flows such as the effective viscosity, hindered settling
correlation, pair-distribution function, and composite drag, they were not benchmar-
ked or compared to experiment to determine whether they could accurately follow
particle trajectories. It has been shown that very small errors in a particle velocity can
result in large changes in the particle trajectory (Jayaweera, Mason & Slack 1964;
Jánosi et al. 1997; Ingber et al. 2006).

Mammoli (2005) developed the lubrication-corrected completed double-layer
boundary integral equation (LC/CDL-BIE) method in order to perform detailed
studies of particle trajectories in Stokes flow. His method was based on an approach
developed by Zinchenko (1998) to study the effective conductivity of granular
materials. In this approach, when a collocation point on a given particle was close
to an adjacent particle, the particle containing the collocation point was shrunk
anywhere from 2 % to 5 %. In order to correct for the shrinkage, a combination of
analytic values for the resultant forces and moments on the particles were added to
the range completer in the CDL-BIE. This approach resulted in excellent near- and
far-field approximations. However, there was a small range of particle separations on
the order of 1 % of the characteristic particle diameter in which the intermediate field
approximation was relatively poor. Although for bulk quantities such as an effective
viscosity of a suspension, the LC/CDL-BIE yielded excellent results (Mammoli 2002),
the method could not resolve individual particle trajectories accurately enough to
calculate quantities such as particle self-diffusivity since the two-particle interactions
would very often go through the region of maximum pain on the order of 1 % of the
characteristic particle diameter where the intermediate field was not well resolved.

In the current research, a new method is developed to incorporate the near-field
effects into the boundary element method. Rather than working with lubrication
forces, as done previously (Bossis & Brady 1984; Dance & Maxey 2003; Sangani &
Mo 1994; Nasseri et al. 2000; Mammoli 2005), asymptotic solutions have been derived
for the traction field in the interstitial regions between particles. The calculation of
the traction unknowns, for a single boundary element centred around the point of
nearest contact, is based solely on the relative motion of the two particles in terms
of the asymptotic traction solutions rather than on boundary element collocation
within that element. In this way, the system remains fully coupled, incorporating
the boundary element representation for all other elements along with the near-field
asymptotics. This new traction-corrected boundary element method (TC-BEM) is
capable of accurately predicting particle trajectories, and hence can be effectively
used as a mesoscopic tool to study particle self-diffusion and migration in nonlinear
shear fields.

The organization of this paper is as follows. In § 2, the formulation for the near-field
asymptotic traction solution for solid spheres suspended in a viscous fluid is presented.
In § 3, the TC-BEM formulation is presented. In § 4, the TC-BEM is benchmarked by
comparison with the analytic solution for the interaction of two spheres in a linear
shear field. Although this problem has been studied previously (da Cunha & Hinch
1996), some new results are presented characterizing the effects of surface roughness
on the resulting irreversibility in the particle trajectories. In § 5, the results of an
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Mode I Mode II Mode III Mode IV

Figure 1. The four modes of relative motion of two spheres suspended in a viscous
shear flow.

extensive study of self-diffusion and particle migration of rough spheres in nonlinear
shear flows is presented. Finally, in § 6, some conclusions are drawn.

2. Near-field asymptotic traction solution for solid spheres suspended in a
viscous fluid

The relative motion of two spheres suspended in a viscous shear flow can be
decoupled into 4 basic modes of motion, as shown in figure 1. These motions are given
by one sphere rotating relative to the other sphere about a line perpendicular to their
line of centres (mode I), one sphere translating relatively to the other sphere along a
line perpendicular to their line of centres (mode II), one sphere rotating relative to the
other sphere about their line of centres (mode III), and one sphere translating relative
to the other sphere along their line of centres (mode IV). Asymptotic solutions for
the velocity and pressure field for all four modes in the interstitial region between two
nearly touching spheres can be derived using well-known lubrication approximations.
Despite the fact that the governing asymptotic equations for all four modes of motion
have been previously derived by Cox & Brenner (1967), Corless & Jeffrey (1988), and
O’Neill & Majumdar (1970b, a), none of these researchers provided the complete
solutions to the equations since their primary interest was the resultant force and
moment exerted by one sphere on the other.

The governing equations for steady-state, creeping fluid flow are given by

∇ · u′ = 0, (2.1)

∇ · σ ′ = 0. (2.2)

The total stress field σ ′ is given by

σ ′ = −p′I + µ(∇u′ + ∇u′T), (2.3)

where p′ is the hydrostatic pressure, I is the unit tensor, µ is the constant viscosity
of the suspending fluid, and the superscript T denotes the transpose operator. The
boundary traction field is defined by

t ′ = n · σ ′ (2.4)

where n is the unit normal vector pointing outward from the fluid field.
In the following, sphere A is moving while sphere B is at rest and sphere A is

positioned directly above sphere B. A cylindrical coordinate system is chosen (r ′, θ ,
z′) whose origin lies on the surface of sphere B at the closest point to sphere A.
The minimum separation distance between the closest points of sphere A and B is δ
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where, for the asymptotic analysis considered herein, δ � a. The velocity components
are given by (u′, v′, w′).

The cylindrical coordinates r ′ and z′ are first non-dimensionalized and then stretched
using the equations

r =
r ′

a
, z =

z′

a
, (2.5)

r∗ =

√
a

δ
r, z∗ =

az

δ
. (2.6)

The equations of surfaces of A and B are now given in terms of the stretched
coordinates by

z∗ =
δ (r∗)4

8a
+

(r∗)2

2
+ 1 + O

((
δ

a

)2
)

on sphere A, (2.7)

z∗ = −δ (r∗)4

8a
− (r∗)2

2
− O

((
δ

a

)2
)

on sphere B. (2.8)

For mode I motion, the non-dimensional pressure and velocity components are
given by

p(r, z) =
p′

µΩI cos(θ)
, u(r, z) =

u′

aΩI cos(θ)
, v(r, z) =

v′

aΩI sin(θ)
, w(r, z) =

w′

aΩI cos(θ)

(2.9)

where ΩI is the rotation rate of sphere A about an axis perpendicular to the line
of centres. The non-dimensional scaled expansions of the flow field in the inner gap
region are given by

p =

(
δ

a

)−3/2

p1 +

(
δ

a

)−1/2

p2 + O

((
δ

a

)1/2
)

, (2.10)

u = u1 +
δ

a
u2 + O

((
δ

a

)2
)

, (2.11)

v = v1 +
δ

a
v2 + O

((
δ

a

)2
)

, (2.12)

w =

(
δ

a

)1/2

w1 +

(
δ

a

)3/2

w2 + O

((
δ

a

)5/2
)

(2.13)

(O’Neill & Majumdar 1970b; Jeffrey & Onishi 1984; Corless & Jeffrey 1988).
The non-dimensional velocity components and pressure for mode II motion are the

same as for mode I motion except that aΩI is replaced by U in (2.9), where U is the
translational velocity of sphere A. Further, the non-dimensional scaled expansion of
the velocity components and pressure are identical to mode I motion.

For mode III motion, the pressure field is identically zero and the only non-zero
component of velocity is in the v′-direction. The non-dimensional velocity component
is given by

v(r, z) =
v′

aΩ III
, (2.14)
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where, in this case, ΩIII is the rotation rate of sphere A about the line of centres
of the two spheres. The scaled expansion of the velocity component in the inner gap
region is given by

v =

(
δ

a

)1/2

v1 + O

(
δ

a

)3/2

(2.15)

(Jeffrey & Onishi 1984).
For mode IV motion, the non-dimensional pressure and (non-zero) velocity

components are given by

p(r, z) =
ap′

µW
, u(r, z) =

u′

W
, w(r, z) =

w′

W
, (2.16)

where W is the separation velocity of sphere A along the line of centres of the two
spheres. Following Cox & Brenner (1967), the scaled expansions for p, u, and w are
given by

p = p1 +
δ

a
p2 + O

((
δ

a

)2
)

, (2.17)

u = u1 +

(
δ

a

)1/2

u2 + O

((
δ

a

)3/2
)

, (2.18)

w = w1 +
δ

a
w2 + O

((
δ

a

)2
)

. (2.19)

The first- and second-order governing equations for all four modes of motion
can be found in the original references given above (Cox & Brenner 1967; O’Neill
& Majumdar 1970b; Jeffrey & Onishi 1984; Corless & Jeffrey 1988). However, as
discussed above, none of these authors provided the complete solutions for these
equations. The asymptotic pressure and velocity solutions up to the orders indicated
by (2.10)–(2.13) for mode I and II motion, (2.15) for mode III motion, and (2.17)–(2.19)
for mode IV motion are given in the appendices. The stress tensor can then be formed
using the well-known constitutive law for Newtonian fluids from the pressure and
velocity gradient fields. Finally, the asymptotic traction solution can be determined
by contracting the stress tensor with the unit normal vector. The asymptotic traction
solutions are not presented in the appendices because of their length.

3. Traction-corrected boundary element formulation
In this section, the traditional direct boundary element formulation for particles

suspended in a viscous shear flow is first presented followed by the coupling technique
to introduce the near-field asymptotic traction solution in the interstitial region
between two nearly touching spheres. The physical system considered comprises rigid
spheres suspended in an incompressible, exterior flow of a Newtonian fluid at zero
Reynolds number.

The governing continuity and momentum equations, (2.1) and (2.2), can be recast
into integral form by considering a weighted residual reformulation of the governing
equations with weighting functions given by fundamental solutions of the Stokes
equations (Ladyzhenskaya 1969; Youngren & Acrivos 1973; Ingber 1989). The
fundamental solution for the velocity field and the associated fundamental solution
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for the stress field are given by

u∗
ij (ξ, x) =

1

8πr
(δij + r,ir,j ), (3.1)

q∗
ijk (ξ, x) =

−3

4π

r,ir,j r,k

r2
, (3.2)

where r is the distance between ξ and x, δij is the Kronecker delta function and the
comma denotes differentiation with respect to the appropriate Cartesian coordinate.
The resulting boundary integral equation (BIE) is given by (Kim & Karrila 1991)

cij (ξ ) uj (ξ ) +

∫
Γ

q∗
ijk (ξ, x) uk (x) nj (x) dΓ = −

∫
Γ

u∗
ij (ξ, x) tj (x) dΓ , (3.3)

where tk represents the components of the traction along the surface Γ and nj

represents the components of the unit outward-normal vector to the boundary Γ .
The coefficient tensor cij can be determined from the local geometry at the field point
or by integrating q∗

ijk over Γ . However, for the spherical geometries considered in this
paper, cij = δij /2.

The BIE (3.3) is discretized by subdividing the boundary of the domain Γ into
superparametric boundary elements in which the geometry is given piecewise quadratic
approximation and the traction and velocity components are given piecewise constant
approximation. By collocating the BIE at the centre of each element, the following
linear equations are generated:

[Hij ] {ũj } = [Gij ] {̃tj } , (3.4)

where ũj and t̃j represent the values of the components of velocity and stress
respectively at the boundary element nodes.

In the current BEM formulation, neither the components of velocity nor traction
are known on the surface of the suspended particles. For rigid particles, the velocity
components on the particle surface can be related to the six components of linear
and angular velocity at the centroids of the particles through a kinematic tensor
transformation. That is,

{ũj } = [Kjl] {Ul} , (3.5)

where Ul represents the velocities (linear and angular) at the centroids of the particles.
The algebraic system of equations is closed in the quasi-static analysis by enforcing

equilibrium equations in which the resultant forces and moments on the particles
generated by the surface tractions and body forces are set to zero. That is,∫

Γi

n · σdΓ + bi = 0, (3.6)∫
Γi

(q − qi) × (n · σ ) dΓ = 0, (3.7)

where bi is the body force acting on the ith particle, and qi is the location of the
centroid of the ith particle. These equations can be represented symbolically in matrix
form in terms of the surface tractions as follows:

[Mij ] {̃tj } =
{
b̃i

}
. (3.8)
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The governing linear system is then obtained by combining (3.4), (3.5) and (3.8),
which is written as [

[Gij ] −[Hij ][Kjl]

[Mij ] 0

]{
{̃tj }
{Ul}

}
=

{
0{
b̃i

}
}

. (3.9)

It has been shown previously (Hampton et al. 2003; Mammoli 2005) that
the convergence characteristics of most numerical methods, including the current
boundary element formulation for the analysis of rigid particles suspended in an
incompressible flow field, are inadequate as the separation between particles becomes
small. Typically, the results of these methods overpredict the relative velocity of the
particles and underpredict the interstitial tractions. The convergence and accuracy
of the BEM formulation can be vastly improved by incorporating the near-field
asymptotic traction solution.

The current TC-BEM is based on a fixed mesh (discretization) for each particle.
In particular, a mesh containing 294 boundary elements per sphere is used in the
current research, although other meshes could also be used. For any given relative
position of the particles, the meshes are rotated so that the boundary element initially
centred on the south pole of one sphere is exactly aligned with the boundary element
initially centred on the north pole of the second sphere. With the rotated mesh, the
linear system of boundary element, kinematic, and equilibrium equations, (3.9), is then
generated. Next, the 6 equations of the linear system associated with collocation at the
two nodes (one per particle) centred within the two elements in the interstitial region
between spheres are replaced using the asymptotic traction solution as described
below.

First the average tractions over an interstitial element are tabulated in the TC-BEM
computer code for three of the four modes of relative motion discussed in the previous
section, namely, mode I, mode II, and mode IV at selected separations, δ/a, between
the particles, under the presumption that the linear speed and absolute value of the
angular velocity for each particle is unity. Mode III motion need not be considered,
since the net contribution of this mode to the overall force and moment exerted on
the element is zero. The table has a maximum separation of δ/a = 0.2 and a minimum
separation of δ/a = 0.00002 where δ is the minimum surface-to-surface separation
between the two spheres. For relative positions of the particles with δ/a > 0.2, no
traction correction is used. For δ/a < 0.00002, the simulation is stopped, although
smaller separations could be considered by expanding the table. For values of δ/a not
in the table, a cubic spline interpolation is used to determine the appropriate traction.

The values of the traction for the 3 modes of relative motion determined from
the tabulated data are given by f1, f2 and f4. Again, since f2 and f4 are calculated
presuming an appropriate relative approach velocity of unity and f1 is calculated
based on a relative rotational velocity of unity, these quantities can be thought of
as forces per unit approach velocity. Further, since the traction scales directly with
the relative velocities of the particles, the average normal and two tangential traction
components, τn, τt1, and τt2, respectively, for the interstitial elements are given by

⎧⎨
⎩

τn

τt1

τt2

⎫⎬
⎭ =

⎡
⎣f4/2 0 0 0 0 0

0 f2/2 0 0 −f1/2 0

0 0 f2/2 0 0 −f1/2

⎤
⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dun

dut1

dut2

dωn

dωt1

dωt2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (3.10)



276 M. S. Ingber, S. Feng, A. L. Graham and H. Brenner

δ/a

N
or

m
al

 tr
ac

ti
on

10–5 10–4 10–3 10–2 10–1

102

103

104

105

106

Modified traction
Asymptotic traction

Figure 2. Asymptotic and modified tractions for mode IV motion as a function of particle
separation, δ/a.

where dun, dut1, and dut2 represent the difference in the appropriate component of
velocity between the two spheres and dωn, dωt1, and dωt2 represent the corresponding
differences in the angular velocity components of the two spheres. Since the unknowns
in (3.9) include the velocities and tractions in Cartesian coordinates, transformation
matrices are applied to (3.10) so that the surface tractions in Cartesian coordinates
are related to the velocity differences in Cartesian coordinates.

The approach described above was refined slightly by performing simulations of
mode I, mode II, and mode IV motions separately. For example, for mode IV motion,
the particles were aligned vertically and a force of known magnitude was applied
to each particle so that the analytic solution gave an approach velocity of 1.0 for
each particle. Generally, with the traction correction provided by the asymptotic
solutions, the TC-BEM provided particle velocities that were slightly different
from the analytical solution of 1.0. This discrepancy is mainly caused by the fact that
the traction used in the interstitial region is an area-averaged traction as opposed
to the exact distribution over the element. To improve the accuracy of the method,
the tractions were adjusted slightly so that the analytical velocity could be recovered
for all three modes of motion. As an example, the asymptotic traction solution as a
function of particle separation, δ/a, is shown in figure 2. Also shown in the figure
are the modified tractions, f 4, that were actually placed in the table to be used
in (3.10).

The TC-BEM formulation corresponds to the grand resistance formulation in that
the particle velocities are solely a function of position. The particles are repositioned
in time using a third-order variable-time-step Runge–Kutta method in which the time
step is adjusted based on the local truncation error.

A roughness model has been added to the TC-BEM which restricts the normal
motion of the particles if the separation between particles δ becomes less than a
specified particle roughness ε. This model is essentially equivalent to the non-locked
model of da Cunha & Hinch (1996).
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Figure 3. Particle trajectories in the shear plane for the upper sphere for the case �z−∞ = 0.2
and ε/a = 1.0 × 10−3. �x is the horizontal separation of the spheres given by x1 − x2.

4. Numerical benchmarking of the TC-BEM
The numerical benchmarking of the TC-BEM is provided by a series of problems

consisting of two particles in a linear shear flow whose centres lie in the same shear
plane. In the following section, these simulations will be extended to cases in which
the particles do not lie in the same shear plane, and to nonlinear shear flows. The
following definitions will be useful in characterizing these problems. The coordinates
of the two particles are given by (x1, y1, z1) and (x2, y2, z2). The initial centre-to-centre
separations of the spheres in the three coordinate directions are given by �x−∞,
�y−∞, and �z−∞. For all simulations the shear plane is the x−z plane, the far-field
velocity is in the x-direction, and the initial separation is given by �x−∞/a = −10.
The simulations are stopped when x2 − x1 = 10a, which then sets the downstream
separations denoted by �x∞, �y∞, and �z∞. The particle trajectories are typically
drawn with respect to the transient separation �x = x1 − x2.

Example trajectories of the upper sphere generated using the analytic solution and
the TC-BEM for the case of �z−∞/a = 0.2 and particle roughness ε/a = 1.0 × 10−3

are shown in figure 3. In this case of linear shear flow, the trajectory of the lower
sphere is the mirror image of the upper sphere. As seen in the figure, there is
excellent agreement between the trajectory generated using the TC-BEM and the
analytically generated trajectory (da Cunha & Hinch 1996). The particle separation,
δ/a, as a function of far-field strain is shown in figure 4. Again, there is excellent
agreement between the TC-BEM and the analytic solution. Both curves bottom out
at a separation of δ/a = 1.03 × 10−3 as dictated by the roughness model.

The difference in the upstream and downstream vertical separation of the centre of
the spheres, �z±∞ = �z∞ −�z−∞, is an important quantity in determining the particle
self-diffusivity. In fact, the square of this quantity is used to calculate the in-plane
self-diffusivity (da Cunha & Hinch 1996). For the case shown in figure 3, assuming
the analytic model with roughness to be correct, the relative error in (�z±∞)2 using
the TC-BEM is 2.25 %. Hence, the TC-BEM can be used to obtain quantitatively
correct self-diffusivities.
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Figure 4. Particle separations as a function of strain for the case �z−∞/a = 0.2 and
ε/a = 1.0−3.

�z−∞/a �z∞/a

ε/a = 1.0 × 10−3 ε/a = 1.0 × 10−4 ε/a = 0.0

TC-BEM Analytic TC-BEM Analytic TC-BEM Analytic

0.20 0.7146 0.7100 0.3470 0.3398 0.2034 0.2000
0.30 0.7146 0.7100 0.3456 0.3398 0.3018 0.3002
0.40 0.7146 0.7100 0.4004 0.4000 0.4004 0.4000
0.50 0.7146 0.7100 0.5002 0.5000 0.5002 0.5000
0.60 0.7146 0.7100 0.6004 0.6000 0.6004 0.6000
0.70 0.7146 0.7100
0.72 0.7200 0.7200
0.80 0.8000 0.8000
1.00 1.0000 1.0000

Table 1. Upstream (�z−∞/a) and downstream (�z∞/a) vertical separation of the centres of
the spheres.

A number of additional cases are considered and the results for �z∞/a are shown
in Table 1 for ε/a = 1.0 × 10−3, ε/a = 1.0 × 10−4, and smooth particles (ε/a = 0.0).
For the case of ε/a = 1.0 × 10−3 with upstream vertical separations ranging from
0.2 � �z−∞/a � 0.7, the downstream vertical separation, �z∞/a, as calculated by
the TC-BEM is �z∞/a = 0.7146 and as calculated using the analytical method is
�z∞/a = 0.7100. That is, for cases in which the initial vertical separations of the
spheres is less than approximately 0.72, the trajectories of the particles are essentially
the same after they pass one another. In fact, for both the TC-BEM and the
analytical method, the roughness model is not invoked for �z−∞/a � 0.72, and hence,
the trajectories are essentially reversible, as evidenced by the fact that �z±∞/a =0.
Similar results are seen in the table for the case ε/a =1.0 × 10−4. The final differences
in the elevations of the spheres, �z∞/a, do not change for the TC-BEM and analytic
results for the irreversible cases in which z−∞/a < 0.4. The TC-BEM and analytic
results are essentially reversible for �z−∞/a � 0.4. Finally, the results for smooth
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Figure 5. Typical TC-BEM-simulated trajectories in the shear plane of two rough
spheres suspended in a nonlinear shear flow with initial positions (−5.0, 0.05, 0.1) and
(5.0, −0.05, −0.1) and nonlinearity parameter a∇γ̇ /γ̇ = 1.0.

spheres show the high level of accuracy of the TC-BEM in that the predicted
trajectories are essentially reversible despite the very narrow particle separations that
occur during the simulations. It should be noted that a combination of mode I,
mode II, and mode IV relative motions are simultaneously present during these
simulations.

5. Self-diffusivity and migration of particle pairs
The self-diffusivity and migration of particle pairs is characterized by simulating

the interaction of spheres suspended in nonlinear shear flows at a variety of relative
initial positions. The far-field quadratic velocity profile is in the x-direction and is
given by

u = b − c∗(z − d)2, (5.1)

where b, c, and d are constants. Hence, the shear plane is the x−z plane and
the out-of-shear (vorticity) plane is the x−y plane. The strength of the nonlinear
flow is characterized by the nonlinearity parameter defined by a∇γ̇ /γ̇ .† As in the
previous section, the simulations are started with �x−∞/a = −10 and stopped when
�x∞/a =10.

Typical BEM-simulated transient trajectories of particle pairs in the shear plane,
in the out-of-shear plane, and the location of the centre of gravity in the shear
plane are shown in figures 5–7, respectively, for particle roughnesses in the range of
1×10−4 � ε/a � 1×10−1 and nonlinearity parameter a∇γ̇ /γ̇ = 1.0. The initial positions
of the spheres are at (−5.0, 0.05, 0.1) and (5.0, −0.05, −0.1). As seen in figure 5,
for the trajectories in the shear plane, neither sphere returns to its initial streamline
after interaction, indicating that the trajectories are irreversible as in the case for
linear shear flows. However, unlike the linear shear flow case, the trajectories become

† For the Poiseuille flow considered herein, the nonlinearity parameter takes on a particularly
simple form, namely, a∇γ̇ /γ̇ = a/(z − d), as determined from (5.1). However, for other flow fields
such as circular Couette flow, the functional form is typically more complex.
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Figure 6. Typical TC-BEM-simulated trajectories in the out-of-shear plane of two rough
spheres suspended in a nonlinear shear flow with initial positions (−5.0, 0.05, 0.1) and
(5.0, −0.05, −0.1) and nonlinearity parameter a∇γ̇ /γ̇ = 1.0.
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Figure 7. The vertical location of the centre of gravity, zcg/a, as a function of �x/a for two
rough spheres suspended in a nonlinear shear flow with initial positions (−5.0, 0.05, 0.1) and
(5.0, −0.05, −0.1) and nonlinearity parameter a∇γ̇ /γ̇ = 1.0.

more and more asymmetric about the z-axis with increasing particle roughness. The
characteristics of the trajectories in the out-of-shear plane (figure 6) are similar to the
in-shear plane, including the loss of symmetry caused by the nonlinearity of the flow
field. The asymmetries seen in the trajectories indicate that there is a net permanent
displacement of the centre of gravity of the particle pair. The net displacement in the
z-direction is always towards the low-shear-rate region of the flow field, and hence
will be called particle migration. The net displacement in the y-direction will change
sign with the sign of �y−∞, and hence, when integrated over all possible relative
starting positions of the particle pairs, will produce no net effect. The net permanent
migration of the centre of gravity of the particle pair in the z-direction, �zcg/a, as
shown in figure 7, is seen to increase with increasing particle roughness.
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Figure 8. The inter-particle separation as a function of the angle made between the line of
centres between the two spheres and the horizontal, θ , upon approach and separation for
initial positions (−5.0, 0.05, 0.1) and (5.0, −0.05, −0.1), nonlinearity parameter a∇γ̇ /γ̇ = 1.0
and ε/a = 1.0 × 10−3.

To better explain the underlying cause of the migration of the centre of gravity
of the particle pair to the low-shear- rate region of the flow field, a plot of the
inter-particle separation between the two spheres, δ/a, for the case ε/a = 1.0 × 10−3 as
a function of the angle that the line of centres of the spheres make with the horizontal
(x-axis) upon approach and separation, is shown in figure 8. As has been noted by a
variety of researchers (da Cunha & Hinch 1996; Rampall, Smart & Leighton 1997;
Morris & Boulay 1999), roughness disturbs the symmetry of the interaction and, as
can be seen in the figure, the particle separation is significantly larger on separation
compared to on approach. However, there is an important ancillary effect caused by
the asymmetry in the inter-particle separations upon approach and separation. This
effect is shown in figure 9, where the absolute value of the average vertical velocity
(z-direction) of the particle pair, |wcg|, is plotted again as a function of the angle that
the line-of-centres of the spheres make with the horizontal. On approach, the particle
pair moves towards the lower-shear-rate region of the flow field and, on separation,
the particle pair moves back towards the higher-shear-rate region of the flow field.
However, the movement during separation is generally slower than during approach,
causing a net permanent displacement of the centre of gravity of the particle pair.

To further reinforce the basis for the migration of a pair of rough spheres in
nonlinear shear flow caused by the asymmetry in inter-particle separations upon
approach and separation, a sequence of snapshots is considered of two particles
suspended in a nonlinear shear flow with a fixed centre of gravity but with a variety
of surface-to-surface separations δ. For the particular case considered, the nonlinearity
parameter is given by a∇γ̇ /γ̇ =1.0. At the farthest separation, the locations of the
two particles are given in units of particle radius by (11.45052, 0.10728, 0.86701)
and (12.82163, −0.0947509, −0.58903) with the inter-particle separation given by
δ/a =1.01832×10−2. At this location, the z-component of velocity of the first particle
is given by w1 = 0.36059 and the z-component of velocity of the second particle is
given by w2 = −0.22716. Hence, the centre of gravity of the particle pair is migrating
towards the low-shear-rate region of the flow field with velocity wcg =0.066715. Now,
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Figure 9. The average absolute value of the vertical velocity of the particle pair, |wcg |, as
a function of the angle made between the line of centres between the two spheres and the
horizontal, θ , upon approach and separation for initial positions (−5.0, 0.05, 0.1) and (5.0,
−0.05, −0.1), nonlinearity parameter a∇γ̇ /γ̇ = 1.0 and ε/a = 1.0 × 10−3.
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Figure 10. The average vertical velocity of the particle pair as a function of inter-particle
separation.

additional snapshots are taken after perturbing the particles inward towards each
other along their line of centres. A plot of the velocity of the centre of gravity wcg as
a function of separation δ/a is shown in figure 10. The migration velocity is seen to
decrease with increasing separation. If the particles were perfectly smooth, the particle
trajectories would be perfectly symmetric upon approach and separation. At a certain
location upon approach, the particles would move towards the low-shear-rate region
of the flow field with a given speed. At the symmetric point during separation, the
particles would be exactly the same distance apart, and hence the particle pair would
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Figure 11. The effect of surface roughness ε and the initial particle separation �z−∞ on the
net permanent displacement of the centre of gravity of the particle pair for the case �y−∞/a = 0
and a∇γ̇ /γ̇ = 1.0.

move towards the high-shear-rate region of the flow field with exactly the same speed
as upon approach. Hence, after separation, there would be no net migration of the
particle pair. However, for rough particles, the distance between the particles on
separation is greater than on approach, and hence the speed at which the particles
move towards the low-shear-rate region on approach is faster than the speed at which
the particles move towards the high-shear-rate region on separation. Therefore, the
net effect is the observed migration of the particle pair towards the low-shear-rate
region of the flow field.

The net permanent displacement of the centre of gravity of rough particle pairs in
nonlinear shear flows is shown as a function of surface roughness in figure 11 for
a variety of initial vertical displacements and in figure 12 for a variety of values of
the nonlinearity parameter. The net permanent displacement of the centre of gravity
is seen to increase with increasing particle roughness and nonlinearity parameter
but decrease with increasing initial vertical separation. In fact, the net permanent
displacement increases essentially linearly with increasing nonlinearity parameter, as
seen in figure 13.

The self-diffusivity of a single, marked particle in a suspension undergoing shear
flow is defined as half the rate of change in time of the variance of the displacement
of the cross-streamline random walk due to collisions with other particles. The dilute
suspension under consideration is at a uniform concentration with φ = 4

3
πna3 � 1,

where n is the number density of the particles in the suspension. Following
da Cunha & Hinch (1996), the rate of collisions with relative displacements in
(y−∞, y−∞ + δy−∞) × (z−∞, z−∞ + δz−∞), which have spheres approaching at a relative
velocity of �v−∞, is n�v−∞δy−∞δz−∞. A collision with these parameters produces net
displacements of the test sphere (−�y±∞, −�z±∞). As it is assumed that each of these
collisions is uncorrelated, the self-diffusivities in the z-direction can be calculated by

Ds
z =

1

2

∫ ∞

−∞

∫ ∞

−∞
(�z±∞)2n�v−∞ dy−∞ dz−∞. (5.2)
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Figure 12. The effect of surface roughness ε and the nonlinearity parameter a∇γ̇ /γ̇ on the
net permanent displacement of the centre of gravity of the particle pair �zcg for the case
�y−∞/a =0 and �z−∞ = 0.2.
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Figure 13. The net permanent displacement of the particle pair �zcg as a function of

the nonlinearity parameter a∇γ̇ /γ̇ for a roughness of ε/a = 1.0 × 10−3. The initial particle
separations are given by �y−∞/a = 0.076637 and �z−∞/a = 0.056351.

Non-dimensionalizing the lengths in the integral with the radius of the sphere, a,
yields

Ds
z = φa2 3

8π

∫ ∞

−∞

∫ ∞

−∞
(�z±∞)2�v−∞ dy−∞ dz−∞. (5.3)

Now, for the Poiseuille flow under consideration with far-field velocity given by (5.1),
it can be shown that

�v−∞ = γ̇cg�z−∞, (5.4)
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a∇γ̇ /γ̇ Ds
y/φa2γ̇ Ds

z/φa2γ̇

0.0 0.1330 × 10−4 0.8653 × 10−3

0.125 0.1342 × 10−4 0.8692 × 10−3

0.25 0.1341 × 10−4 0.8689 × 10−3

0.5 0.1339 × 10−4 0.8680 × 10−3

1.0 0.1322 × 10−4 0.8627 × 10−3

1.5 0.1317 × 10−4 0.8595 × 10−3

Table 2. The self-diffusivity coefficients divided by φa2γ̇ as a function of the nonlinearity
parameter for the case ε/a = 1.0 × 10−3.

where γ̇cg is the shear rate at the centre of gravity of the particle pair before interaction.
Hence, the self-diffusivity in the z-direction is given by

Ds
z = φa2γ̇

3

8π

∫ ∞

−∞

∫ ∞

−∞
(�z±∞)2�z−∞ dy−∞ dz−∞. (5.5)

The self-diffusivity in the y-direction, Ds
y , can be derived in a similar manner and is

given by

Ds
y = φa2γ̇

3

8π

∫ ∞

−∞

∫ ∞

−∞
(�y±∞)2�z−∞ dy−∞ dz−∞. (5.6)

These formulas for the self-diffusivity reduce to those given by da Cunha & Hinch
(1996) for a linear shear flow.

The net displacement of the centre of gravity of the particle pair can be characterized
by a migration diffusion coefficient, Dm, defined by

Dm = φa2γ̇
3

8π

∫ ∞

−∞

∫ ∞

−∞
(�zcg)

2�z−∞ dy−∞ dz−∞. (5.7)

Hence, the migration diffusion coefficient measures the variance of the location of
the centre of gravity caused by the two-particle interactions. However, unlike the
self-diffusivity coefficients Ds

y and Ds
z , there is an associated directionality of the

migration towards the low-shear-rate region of the flow field.
The three diffusivities, Ds

z , Ds
y , and Dm, are evaluated numerically based on the

TC-BEM simulations. The integration is performed over the positive quadrant and,
by symmetry, that result is quadrupled to determine the diffusivities. A plot of
Ds

z/φa2γ̇ and Ds
y/φa2γ̇ for the case a∇γ̇ /γ̇ = 1.0 is shown in figure 14. These results

actually match those of da Cunha & Hinch (1996) quite well, despite the fact that
da Cunha & Hinch performed their simulations in a linear shear flow. Even though
the trajectories of the particles are quite different in linear and nonlinear shear flows,
the net change in the spread in the y- and z-directions between the centres of the
particles as characterized by �y±∞ and �z±∞ is remarkably unaffected. To reinforce
this point, the self-diffusivities are shown in table 2 for a variety of values of the
nonlinearity parameter including a∇γ̇ /γ̇ = 0.0, (i.e. for a linear shear flow), with
roughness given by ε/a =1.0 × 10−3. It is seen in the table that the self-diffusivities
are essentially constant. Similar results were obtained for other values of roughness.

The migration diffusion coefficient Dm divided by φa2γ̇ is shown in figure 15 as
a function of the nonlinearity parameter for a variety of particle roughnesses. The
trends are the same as those discussed above for the net displacement of the centre
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Figure 14. The self-diffusivity coefficients, Ds
z and Ds

y divided by φa2γ̇ , for dilute
suspensions of rough spheres suspended in a nonlinear shear flow for the case a∇γ̇ /γ̇ = 1.0.
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Figure 15. The migration diffusivity coefficient, Dm divided by φa2γ̇ , as a function of the
nonlinearity parameter.

of gravity of the particle pair in nonlinear shear flow. That is, the migration diffusion
coefficient increases with both the particle roughness and the nonlinearity parameter.

6. Conclusions
The analysis of self-diffusion and migration of rough spheres in nonlinear shear

flows at negligible Reynolds numbers is performed using a traction-corrected
boundary element method (TC-BEM). The TC-BEM is based on coupling the
asymptotic traction solution in the interstitial region between particles with boundary
element equations for the fluid and kinematic and equilibrium equations for the
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particles. The resulting system is fully coupled through the particle velocities. The
asymptotic traction solution presented in this work is new and should have additional
applications. The current numerical approach is substantially different from previous
numerical techniques based on lubrication forces and moments. Although these
previous methods could resolve gross features of the flow field, they are inadequate
for following individual particle trajectories, and hence cannot be used to determine
diffusivities of dilute suspensions. The TC-BEM was benchmarked against analytic
solutions and was shown to be extremely accurate even for small inter-particle
separations.

The main result of the current study is that there is a net migration of the centre
of gravity of a pair of rough spheres suspended in a nonlinear shear flow towards the
low-shear-rate region of the flow. This migration increases with the nonlinearity of
the flow field and with particle roughness. A detailed explanation is provided for the
particle migration based on the fact that the speed of the centre of gravity towards
(upon approach) or away (upon separation) from the low-shear-rate region of the
flow field is a function of inter-particle separation. Roughness causes inter-particle
separations to be larger during separation compared to approach, which causes the
permanent net migration of the centre of gravity of the particle pair towards the
lower-shear-rate region.

The particle self-diffusivity coefficients, Ds
y and Ds

z , were calculated over a range
of roughnesses and nonlinear parameters. For linear shear flows, the current
results determined using the TC-BEM matched analytic results. Interestingly, it was
determined that the self-diffusivities are not functions of the nonlinearity parameter.
A new migration diffusivity, Dm, was defined to characterize the variance of the net
displacement of the centre of gravity of a particle pair. The migration diffusivity
increased with both particle roughness and the nonlinearity parameter. In fact, for
large values of the nonlinearity parameter, the migration diffusivity could actually
exceed the out-of-plane self-diffusivity.

The migration of a rough particle pair towards the low-shear-rate region of the
flow field is a significant new result of this research because it provides a clue as
to why current rheological models for suspension flows are inadequate in modelling
transient concentration profiles. Most explanations for particle migration upon which
these models are based discuss asymmetrical multi-body interactions associated with
gradients in shear rate, concentration, effective suspension viscosity, and/or particle-
phase stress. However, no rheological model proposed to date can model the transient
experimental data collected in Couette devices, eccentric bearing geometries, pipe
flow, expansion flow, among others. In fact, the current models are typically orders
of magnitude off in predicting the time to steady state. As an example, consider
a suspension flow in a Couette device of fixed dimensions with the inner cylinder
rotating and the outer cylinder fixed. The current rheological models predict the
migration rate to scale with the square of the characteristic particle radius. On the
other hand, experimental data suggest that the migration scales with the particle
radius raised by a power anywhere from 2.5 to 2.9. However, this new mechanism
for the net migration of rough particle pairs detailed in this research is missing from
these models. It has been shown in the current study that the magnitude of the net
permanent displacement of the centre of gravity of a pair of interacting particles
essentially scales linearly with the nonlinearity parameter. Since the mean flow profile
in the Couette device does not change significantly with particle size, the nonlinearity
parameter also increases linearly with particle radius. This then suggests that the
diffusion coefficients themselves used in the current rheological models should be
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functions of the nonlinearity parameter to account for the enhanced migration of
particle pairs during interaction caused by the nonlinearity of the flow field itself. Our
research group is currently investigating incorporating a functional dependence of the
diffusion coefficients on the nonlinearity parameter in these rheological models.
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Appendix A. Mode I motion
The asymptotic velocity and pressure fields for mode I motion are given by:

u =
a5 cos(θ)
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a3

)
+1200z4

)
r4−100δ

(
408z4

a
− 806δz3

a2
+ 3δ

(
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a3
+

6

a2

)
z2

+ δ2

(
102

a3
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a4

)
z − 3δ3

(
δ

a5
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a4
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(
8z3

a2
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a3
+ 3δ

(
4δ

a4
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1

a3

)
z + δ2

(
δ

a5
− 8

a4

)))
, (A 1)

v =
a4 sin(θ)

3000(a4r2 + δ)4

(
−1170r10 +

(
−2000z − 4217δ

a
+ 1950

)
r8

+ 6

(
330z2 +

(
500 − 1330δ

a

)
z + δ

(
1050

a
− 1109δ

a2

))
r6

−2

(
500z3 +

(
900 − 3954δ

a

)
z2 + 6δ

(
1159δ
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a

)
z +25δ2

(
101δ

a3
− 135

a2

))
r4
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(
24z4 − 28δz3

a
+ 3δ

(
41δ

a2
− 12

a

)
z2 + δ2

(
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a2
− 149δ

a3

)
z − 3δ3

(
δ

a4
− 8

a3

))
r2

−600zδ

(
8z3

a
− 21δz2

a2
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(
4δ

a3
+

1

a2

)
z + δ2

(
δ

a4
− 8

a3

)))
, (A 2)
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w =
a6r cos(θ)

3000(ar2 + δ)6

((
630z − 65δ

a
− 750

)
r12

+

(
500z2 + 4

(
937δ

a
− 450

)
z − δ

a

(
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a
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+ 3

(
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(
δ

a
− 2

)
z2 +

4δz

a

(
571δ

a
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)
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(
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a
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))
r8
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(
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(
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a
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)
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4δz2

a

(
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a
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)

+
96δ2z
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(
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a
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)
− 5δ3
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(
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a
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+ 2

(
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a
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(
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a
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)

+
δ3z
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(
50207δ

a
− 10800

)
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δ4
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(
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a
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a

(
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a
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a

(
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a
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)
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(
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a

)
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(
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a
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(
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a
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+
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a2

(
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a
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a

(
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a
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)
− 5δ2z2
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(
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a
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)
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(
δ

a
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)
+

6δ5
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))
, (A 3)

p = − 1

125(ar2 + δ2)4
(ar

√
δ(−200δ6 + 25a(17r2 + 58z − 6δ)δ4 − a2(41r4

+ 100(z + 3δ)r2 + 1200z2)δ2 + 5a3(3r6 + 10(5z − 3δ)r4 + 120z2r2))). (A 4)

Appendix B. Mode II motion
The asymptotic velocity and pressure fields for mode II motion are given by:

u =
a3 cos(θ)

12(ar2 + δ)3

((
2z − δ

a
+ 6

)
r6 + 2

(
δ

a

(
6 − δ

a

)
+ 2z

(
δ

a
+ 3

))
r4

+

(
−20z3 +

30δz2

a
− 8δ

a

(
2δ

a
− 3

)
z +

3δ2

a2

(
δ

a
+ 2

))
r2

+
6zδ

a

(
2z2 − 3δz

a
+

δ

a

(
δ

a
+ 2

)))
, (B 1)

v =
a3 sin(θ)

12(ar2 + δ)3

((
2z − δ

a
− 6

)
r6 + 2

(
2z

(
δ

a
− 3

)
− δ

a

(
δ

a
+ 6

))
r4

+

(
4z3 − 6δz2

a
+

8δz

a

(
δ

a
− 3

)
− 3δ2
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(
δ

a
+ 2

))
r2

− 6zδ

a

(
2z2 − 3δz

a
+

δ

a

(
δ

a
+ 2

))))
, (B 2)
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w =
a4r cos(θ)

24(ar2 + δ)4

((
δ

a
− 6

)
r8 +

(
−4z2 +

4δz

a
+

3δ

a

(
δ

a
− 8

))
r6

− 2

(
4

(
2δ

a
− 3

)
z2 +

4δz

a

(
3 − 2δ

a

)
− δ2

a2

(
δ

a
− 15

))
r4

− 2

(
16z4 − 32δz3

a
+

8δz2

a

(
5δ

a
− 3

)
− 24δ2z

a2

(
δ

a
− 1

)
+

3δ3

a3

(
δ

a
+ 2
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r2

+
4zδ

a

(
16z3 − 32δz2

a
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δz

a

(
19δ

a
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)
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(
δ

a
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, (B 3)

p =
ar

√
δ(2az − δ2)

(ar2 + δ2)2
. (B 4)

Appendix C. Mode III motion
The asymptotic velocity and pressure fields for mode III motion are given by:

u = 0, (C 1)

v =
a(r3 + 2zr)

2(ar2 + δ)
, (C 2)

w = 0, (C 3)

p = 0. (C 4)

Appendix D. Mode IV motion
The asymptotic velocity and pressure fields for mode IV motion are given by:

u = 12r

(
r2 +

δ

a

) (
3r5 +

2δr2

a
+

δ2

a2
−

√
δ(2az + δ)2√

2a3/2

)

− r4

(√
δ

2a

(
r2 +

δ

a

)2

− 3(2az + δ)2

a2

) (
16

(
r2 +

δ

a

))−4

,

v = 0, (D 1)

w = −1

2
+

3a2(2az + δ)((r6 − 28r2z2)a2 + (5r4 − 28zr2 − 12z2)δa − 12zδ2)r4

16(ar2 + δ)5

−4(2az + δ)(8r2z2a3 + (3r4 + 8zr2 − 4z2)δa2 + 4(2r2 − z)δ2a + 2δ3)

16(ar2 + δ)4
, (D 2)

p = −
3a

(
a2

(
3r2 − 2

)
r2 + δ2 + a

(
3r2 − 2

)
δ
)

4(ar2 + δ)3
. (D 3)
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